
Anchor Token and Distributions
Smart Contracts - Audit Report

April 6, 2021

This audit has been performed by

Philip Stanislaus and Stefan Beyer

Cryptonics Consulting S.L.
Ramiro de Maeztu 7

46022 Valencia
SPAIN

https://cryptonics.consulting/

1

https://cryptonics.consulting/


Table of Contents

Table of Contents 2

Disclaimer 4

Introduction 5

Purpose of this Report 5

Codebase Submitted for the Audit 5

Methodology 6

Functionality Overview 6

How to read this Report 7

Summary of Findings 8

Code Quality Criteria 9

Detailed Findings 10

CosmWasm anchor-token-contracts Smart Contracts 10

Ending of polls can be blocked 10

Poll indexer and poll voter storage conflicts will cause overwritten data 10

Overwriting an airdrop merkle root will cause users being unable to claim updated
amounts 11

Storing an airdrop merkle root for a future stage may cause users being unable to
claim updated amounts 11

Withdrawing voting tokens will panic if amount is not set 12

Polls cannot be ended if no votes exists in the system 12

Allowing updates to gov config values for ongoing polls can disturb users 12

Invalid merkle roots can cause panics during airdrop claims 13

After gov contract initialization, anyone can set the anchor token contract 14

Overflow checks not set for profile release in packages/anchor_token/Cargo.toml 14

CosmWasm money-market-contracts Smart Contract PR 15

Rewards cannot be claimed after repaying a loan 15

2



Querying borrower may not consider the block height parameter for interest and
rewards 15

Overflow checks not set for profile release in packages/moneymarket/Cargo.toml 16

3



Disclaimer
THE CONTENT OF THIS AUDIT REPORT IS PROVIDED “AS IS”, WITHOUT REPRESENTATIONS
AND WARRANTIES OF ANY KIND.

THE AUTHORS AND THEIR EMPLOYER DISCLAIM ANY LIABILITY FOR DAMAGE ARISING
OUT OF, OR IN CONNECTION WITH, THIS AUDIT REPORT.

THIS AUDIT REPORT IS NOT A SECURITY WARRANTY, INVESTMENT ADVICE, OR AN

ENDORSEMENT OF THE CLIENT OR ITS PRODUCTS. THIS AUDIT DOES NOT PROVIDE A

SECURITY OR CORRECTNESS GUARANTEE OF THE AUDITED SOFTWARE.

4



Introduction

Purpose of this Report
Cryptonics Consulting has been engaged by Terraform Labs to perform a security audit of the
Anchor token and distribution smart contracts.

The objectives of the audit are as follows:

1. Determine the correct functioning of the system, in accordance with the project
specification.

2. Determine possible vulnerabilities, which could be exploited by an attacker.

3. Determine smart contract bugs, which might lead to unexpected behavior.

4. Analyze whether best practices have been applied during development.

5. Make recommendations to improve code safety and readability.

This report represents a summary of the findings.

As with any code audit, there is a limit to which vulnerabilities can be found, and unexpected
execution paths may still be possible. The author of this report does not guarantee complete
coverage (see disclaimer).

Codebase Submitted for the Audit
The audit has been performed on the code submitted in the following GitHub repository:

https://github.com/Anchor-Protocol/anchor-token-contracts

Commit no: ef29e3e635adbdb4c73925065b02a2c50f7b0cc2

In addition the following pull request to the Anchor money market repository has been
audited:

https://github.com/Anchor-Protocol/money-market-contracts/pull/16

Commit no: 60a71be800a673a091aa9deaa5baa2188cae2c9f

5

https://github.com/Anchor-Protocol/anchor-token-contracts
https://github.com/Anchor-Protocol/money-market-contracts/pull/16


Methodology
The audit has been performed by a mixed team of smart contract and full-stack auditors.

The following steps were performed:

1. Gaining an understanding of the code base’s intended purpose by reading the
available documentation.

2. Automated source code and dependency analysis.

3. Manual line by line analysis of the source code for security vulnerabilities and use of
best practice guidelines, including but not limited to:

a. Race condition analysis

b. Under- / overflow issues

c. Key management vulnerabilities

d. Permissioning issues

e. Logic errors

4. Report preparation

The results were then discussed between the auditors in a consensus meeting and integrated
into this joint report.

Functionality Overview
The submitted code implements the smart contracts for the Anchor protocol’s token
implementation and distribution model.

6



How to read this Report
This report classifies the issues found into the following severity categories:

Severity Description

Critical A serious and exploitable vulnerability that can lead to loss of funds,
unrecoverable locked funds, or catastrophic denial of service.

Major A vulnerability or bug that can affect the correct functioning of the
system, lead to incorrect states or denial of service.

Minor A violation of common best practices or incorrect usage of primitives,
which may not currently have a major impact on security, but may do so
in the future or introduce inefficiencies.

Informational Comments and recommendations of design decisions or potential
optimizations, that are not relevant to security. Their application may
improve aspects, such as user experience or readability, but is not strictly
necessary. This category may also include opinionated
recommendations that the project team might not share.

The status of an issue can be one of the following: Pending, Acknowledged, or Resolved.
Informational notes do not have a status, since we consider them optional recommendations.

Note, that audits are an important step to improve the security of smart contracts and can find
many issues. However, auditing complex codebases has its limits and a remaining risk is
present (see disclaimer).

Users of the system should exercise caution. In order to help with the evaluation of the
remaining risk, we provide a measure of the following key indicators: code complexity, code
readability, level of documentation, and test coverage. We include a table with these criteria
for each module, in the corresponding findings section.

Note, that high complexity or lower test coverage does not necessarily equate to a higher
risk, although certain bugs are more easily detected in unit testing than a security audit and
vice versa.

7



Summary of Findings
The Anchor smart contracts were found to contain 0 critical issues, 1 major issue, 6 minor
issues and 6 informational notes:

No Description Severity Status

CosmWasm anchor-token-contracts Smart Contracts

1 Ending of polls can be blocked Major Resolved

2 Poll indexer and poll voter storage conflicts will
cause overwritten data

Minor Resolved

3 Overwriting an airdrop merkle root will cause users
being unable to claim updated amounts

Minor Resolved

4 Storing an airdrop merkle root for a future stage
may cause users being unable to claim updated
amounts

Minor Resolved

5 Withdrawing voting tokens will panic if amount is
not set

Minor Resolved

6 Polls cannot be ended if no votes exists in the
system

Minor Resolved

7 Allowing updates to gov config values for ongoing
polls can disturb users

Informational Acknowledged

8 Invalid merkle roots can cause panics during
airdrop claims

Informational Resolved

9 After gov contract initialization, anyone can set the
anchor token contract

Informational Acknowledged

10 Overflow checks not set for profile release in
packages/anchor_token/Cargo.toml

Informational Resolved

8



CosmWasm money-market-contracts Smart Contract PR

11 Rewards cannot be claimed after repaying a loan Minor Resolved

12 Querying borrower may not consider the block
height parameter for interest and rewards

Informational Acknowledged

13 Overflow checks not set for profile release in
packages/moneymarket/Cargo.toml

Informational Resolved

Code Quality Criteria

Criteria Status Comment

Code complexity Medium -

Code readability and clarity Medium-high -

Level of Documentation Medium-high -

Test Coverage Medium-high -

9



Detailed Findings

CosmWasm anchor-token-contracts Smart Contracts

1. Ending of polls can be blocked

Severity: Major

The poll_all_voters call in contracts/gov/src/contract.rs:547 is unbounded,
as is the voter_store.remove call in line 555. A poll could be blocked by an attacker by
adding lots of votes such that ending the poll runs out of gas, implying that a poll can never
be ended.

Recommendation

We recommend changing the behaviour to let users unlock their own tokens and remove
themselves from the voter store after a poll ends instead of automatically unlocking all tokens
and removing all voters, such that there are no loops needed here.

Status: Resolved

2. Poll indexer and poll voter storage conflicts will cause overwritten
data

Severity: Minor

poll_indexer_* and poll_voter_* store in contracts/gov/src/state.rs do
both use the same storage prefix PREFIX_POLL_VOTER. That will cause conflicts and
overwritten data.

Recommendation

We recommend using distinct storage prefixes for poll_indexer_* and poll_voter_*
stores.

Status: Resolved

10



3. Overwriting an airdrop merkle root will cause users being unable
to claim updated amounts

Severity: Minor

The store_merkle_root function in contracts/airdrop/src/contract.rs:73
does not prevent overwriting merkle roots for existing stages. If a user has already claimed
tokens and a new merkle root from a tree with updated amounts is stored, the user will not be
able to claim those up with updated amounts.

Recommendation

We recommend either changing the claim behaviour to store the already claimed amount per
user and stage and only transferring the unclaimed amount or disallowing overwrites of
merkle roots for existing stages.

UPDATE

This issue has been resolved by refactoring and removing trusted code, reducing possible
admin control.

Status: Resolved

4. Storing an airdrop merkle root for a future stage may cause users
being unable to claim updated amounts

Severity: Minor

The store_merkle_root function in contracts/airdrop/src/contract.rs:73
does not prevent storing a merkle root for a future stage and does also not update the
latest_stage. That allows the owner to set a merkle root for a stage in the future, which
could be used in a claim by a user. That merkle root may be overwritten at some point by the
register_merkle_root function. A user that has already claimed tokens for the stage will not be
able to claim the amount from the updated merkle tree.

Recommendation

We recommend rejecting the update of merkle roots that are for a stage later than
latest_stage or updating latest_stage to the newly stored stage.

UPDATE

This issue has been resolved by refactoring and removing trusted code, reducing possible
admin control.

Status: Resolved

11



5. Withdrawing voting tokens will panic if amount is not set

Severity: Minor

Unwrapping the amount in the withdraw_voting_tokens function in
contracts/gov/src/contract.rs:303 will panic if the amount is None.

Recommendation

We recommend to calculate the amount by using withdraw_share * total_balance
instead.

Status: Resolved

6. Polls cannot be ended if no votes exists in the system

Severity: Minor

The end_poll function in contracts/gov/src/contract.rs:479 returns an error if
total_share equals 0. That implies that if no votes exist in the gov contract at all, a poll
that passed end_height cannot be ended. At the same time, a vote cannot be cast for a poll
that has passed end_height.

The only workaround is to create a new poll, vote on that poll, and then end the previous poll.

Recommendation

We recommend removing the condition on the total_share value.

Status: Resolved

7. Allowing updates to gov config values for ongoing polls can
disturb users

Severity: Informational

In multiple places in the gov contract, current config values are used. When those config vales
is updated through update_config in contracts/gov/src/contract.rs, ongoing
polls will be affected. That behaviour can be unexpected for users and disturb them. In
particular:

● Using the current quorum from the config in
contracts/gov/src/contract.rs:506 might have unintended consequences.
For rational voters, it does not make sense to participate in a vote if quorum and
threshold are already reached. Their vote would cost them fees, without affecting the
outcome. If the quorum is changed after the voting period ended though (or even
shortly before it), they will (might) not be able to vote.

12



● Likewise, using the current threshold from the config in
contracts/gov/src/contract.rs:511 might have unintended consequences.
For rational voters, it does not make sense to participate in a vote if the threshold is
already reached. Their vote would cost them fees, without affecting the outcome. If
the threshold is changed after the voting period ended though (or even shortly before
it), they will (might) not be able to vote.

● Using the current expiration period from the config in
contracts/gov/src/contract.rs:506 can have unintended consequences.
Users might start a poll that's time critical and should be executed before a certain
block height. A change in the global expiration period makes any planning for such a
time critical poll useless, since the expiration period could be changed through
governance at any time. A coordinated change that includes the interests of all
ongoing polls might get impossible if there are many ongoing polls.

● Likewise, using the current timelock period from the config in
contracts/gov/src/contract.rs:585 can have unintended consequences.
Users might start a poll that's time critical and should be executed before a certain
block height. A change in the global timelock period makes any planning for such a
time critical poll useless, since the timelock period could be changed through
governance at any time. A coordinated change that includes the interests of all
ongoing polls might get impossible if there are many ongoing polls.

Recommendation

We recommend storing the quorum, threshold, expiration_period and
timelock_period at poll creation and using those stored values instead of the current
ones.

Status: Acknowledged

This behaviour is intentional since it allows speeding up pending polls in critical situations.

8. Invalid merkle roots can cause panics during airdrop claims

Severity: Informational

Since the merkle root is not validated in the register_merkle_root and
update_merkle_root functions in contracts/airdrop/src/contract.rs,
decoding in the claim function in contracts/airdrop/src/contract.rs:175 could
panic.

Recommendation

We recommend validating the decodability of the merkle root before storing it in
register_merkle_root and update_merkle_root.

Status: Resolved

13



9. After gov contract initialization, anyone can set the anchor token
contract

Severity: Informational

During the init function of the market contract in
contracts/gov/src/contract.rs:37, the anchor_token variable is assigned to
CanonicalAddr::default(). After that initialization, anyone can send the
RegisterContracts message, since there is no permission check in the
register_contracts handler.

Recommendation

We recommend adding permissioning to the register_contracts handler for the
RegisterContracts message.

Status: Acknowledged

Contract deployment is done in a script and can be verified after deployment.

10. Overflow checks not set for profile release in
packages/anchor_token/Cargo.toml

Severity: Informational

While set in all other packages, packages/anchor_token/Cargo.toml does not enable
overflow-checks for the release profile.

Recommendation

While this check is implicitly applied to all packages from the workspace cargo.toml, we
recommend also explicitly enabling overflow checks in every individual package. That helps
when the project is refactored to prevent unintended consequences.

Status: Resolved

14



CosmWasm money-market-contracts Smart Contract
PR

11. Rewards cannot be claimed after repaying a loan

Severity: Minor

The check in contracts/market/src/borrow.rs:202 prevents reward claims if a loan
is repaid already.

Recommendation

We recommend allowing reward claims even after repaying a loan.

Status: Resolved

12. Querying borrower may not consider the block height parameter
for interest and rewards

Severity: Informational

With the changes in this PR, interest is and rewards are only recomputed if the passed block
height is newer than the one from the last computation within a call that stores the state. That
change implies that the passed block height in query_borrower_info in
contracts/overseer/src/querier.rs:27 will only be considered if it is greater than
the stored one.

Recommendation

While not a security concern, this behaviour may confuse users. We recommend removing the
ability to query borrower info by a specific block height.

Status: Acknowledged

15



13. Overflow checks not set for profile release in
packages/moneymarket/Cargo.toml

Severity: Informational

While set in all other packages, packages/moneymarket/Cargo.toml does not enable
overflow-checks for the release profile.

Recommendation

While this check is implicitly applied to all packages from the workspace cargo.toml, we
recommend also explicitly enabling overflow checks in every individual package. That helps
when the project is refactored to prevent unintended consequences.

Status: Resolved

16


